붙임2 Res	search Outcomes Report
Research Outcomes Performance Objectives	SurfaceFluorinationShieldingofSulfideSolidElectrolytesforEnhancedElectrochemicalStability inAll-Solid-StateBatteriesPublished in a Top10%JCRJournal
Type of Performance	 Research Article(Paper) Patents Researcher Engagement Information Exchange Others
Description of Performance Type	Published in Advanced Materials (JCR top 3.8%)
Research Institutes	Korea Advanced Institute of Science and Technology (KAIST) / Prof. Dong-Hwa Seo / Jae-Seung Kim et al. (14 others)
	a $2Li_6PS_5CI(s) + 5F_2(g) \rightarrow P_2S_7(s) + 2LiCI(s) + 10LiF(s) + 3S(s)$ b Spontaneous driving force for fluorination
	\rightarrow
Attachments (Image, Photograph, Ect.)	-0.046 eV/atom -0.091 eV/atom -0.122 eV/atom -0.131 eV/atom
	Li ₆ PS ₅ CI Li ₆ PS ₅ CI _{0.75} F _{0.25} Li ₆ PS ₅ CI _{0.5} F _{0.5} Li ₆ PS ₅ CI _{0.25} F _{0.75} Li ₆ PS ₅ F
	<identification and="" equations="" mechanisms="" of="" reaction="" spontaneous="" substitution="" th="" via<=""></identification>
	computational chemistry.>
Achievement Date	2025.03.15
Summary of Performance	 Developed surface-fluorinated solid electrolytes with enhanced high-voltage stability and clarified the underlying mechanism for improved integration in all-solid-state batteries. This approach significantly boosted battery lifespan and capacity, contributing to sustainable solid-state battery commercialization. The results were published in <i>Advanced Materials</i>, a top-tier journal ranked in the top 3.8% in JCR.
Description of Performance	 Key Features Exploring commercialization strategies for all-solid-state batteries through surface fluorination of sulfide solid electrolytes. Performance High ionic conductivity of 2.1 x 10⁻⁵ S cm⁻¹ was achieved among fluorinated compounds through a surface fluorination strategy. In cells utilizing NCM cathodes, 90.4% of the initial capacity was retained after 50 cycles. Under commercial-level loading conditions (0.33C), a pouch cell exhibited 69.4% capacity retention after 200 cycles. Excellence of the Results Oxidation stability of the argyrodite-type solid electrolyte Li₆PS₅Cl, considered a promising material for all-solid-state battery commercialization, was improved through a surface fluorination. Uniqueness of the Results Proposed a sustainable battery strategy via gas-phase reactions without additional synthesis steps. Formed a surface-to-bulk fluorinated structure without additives or high-temperature sintering.